Category Archives: Wisdom

We’re in this Life Together

Like so much of the choreographed biological relational dance that defines our own being – this place in the cosmos that we have only just begun to capture in our meager abstract net of words – the monarch butterfly lives a life of connectivity to itself and nature that steps far beyond it’s own capacity to grasp. When we witness this spectacle of the monarch life cycles, we can only marvel on the sidelines and partly describe the processes as one of nature’s mundane acts of profound expression unfolds before us. Like us, the monarch butterfly cannot sufficiently explain the intricate depths of its own being, and yet it is somehow aware at some level how to navigate the environment that would swallow it if it did not press back proportionally with an effective strategy to negotiate the perils. The monarch cannot explain why it eats what it eats, why it is equipped the way it is, or breeds successive generations, each with specialized roles and specialized understanding, geared to migrate a partial leg of a journey that spans a number of monarch lifetimes and thousands of miles through a myriad of environmental variables and challenges. It cannot explain the depths of its own genius – to act as a singular cohesive unit in the face of variable challenges with a collective body that spans lifetimes and acts in unison to preserve the species as a whole.

The Monarch butterfly carves out its cycle of life in part through a 2500 mile journey every year over four specialized generations of travelers, each lifespan lasting 2 to 6 weeks, except for those that wait through the winter to make the journey again. Like the monarch, we carry the torch for the larger body of life in many ways we do not understand. The degree to which we can make sense of this journey we are on is perhaps rooted in the theme that is expressed through all biological forms; that the mark we make, like ripples in this common pond in which we all swim, get carried forward in time depending on how much value  they contribute to the extended journey we’re all on. While the significance of our lives exists mostly beyond our field of vision, we can see that what we are is seated on the continuing nourishment and protection of this delicate economy of mutually nourishing relationships from which we all spring.

An Incredible Journey: The Monarch Butterfly Migration

https://www.isfoundation.com/news/incredible-journey-monarch-butterfly-migration

Advertisements

Balance is the Key to Sustainable Systems

 

Balance is the key to sustainable systems. Even vital substances like water can become harmful when they are out of balance. Too much, or too little water, T too high or too low a temperature and so on is harmful. The correct range is key, and this range is determined by the environmental context. When it comes to complex biological systems like ourselves, many forms of balance come into play. How many and which type of cells, proteins and so on are part of the biological economy that has different players with different attributes, but all operate under the unified purpose of nourishing and defending the integrity of the whole system. This principle is echoed on many scales, for instance; we must seek our nourishment, but we must also defend against antagonists as a social community, as a species, and we must nourish and defend the planet if we are to continue. The point is, this nourish and defend in the context of the community principle is what defines a stable and sustainable system. But even these “nourish and defend” traits also must be in balance; proportional to the context of the environment, otherwise they too become harmful.

The same way we go into a highly reactive mode when stressed or faced with a perceived mortal threat – this fight or flight mode, where we try out behaviors that we would never consider in any other context goes into effect. It’s part of the innate systems embedded in our biological systems that go into effect as a means of defending against the loss of the integrity we depend on to remain coherent.

Our individual cells are equipped with these same defensive mechanisms on a smaller scale. When our cells are faced with stressors or mortal threats they also try out radical strategies in an attempt to hold on to integrity as well. These radical adaptive expressions that attempt to stem the tide of destruction can sometimes result in cancer, which produces a radical class of “survivalist” cells, highly focused on, and able to rapidly, adapt. Once they gain a foothold of fiercely adaptive cells in the context of our body, which requires a certain cooperative mutually nourishing relationship climate in order to function, it threatens the integrity we depend on at that larger biological community scale.

In other words, the cancer begins to exercise this highly adaptive “try any and everything adaptive strategy” as the cancerous cells begin to multiply. The cells begin operating as an adaptive agent in its own right, with dynamic adaptive aims that separate from the unified purpose of the body which spawned the cells. It is like a speciation within a single body. Rogue maundering raider cells pillaging the body to continue to exist, not recognizing that this tax will destroy the foundation on which they depend.

Because the hyper active highly adaptive capacity operates without regard to the integrity of the larger system in which the cells reside is why cancer cells, once they develop a communal relationship with one another, are so destructive, and why they are so difficult to eradicate once gain enough ground. Their capacity to adapt by developing radical strategies on the fly makes them a particularly foe to eradicate. In this case, lung cancer develops a digestive system.

Scientists Discover a Tiny Stomach Hidden Inside Lung Tumours, Because Cancer Is Changing

Cancer cells will do whatever it takes to survive.

https://www.sciencealert.com/scientists-discover-a-tiny-stomach-hidden-inside-lung-tumours-because-cancer-is-changing

Cultivating Adaptive Relationships: A Key to Survival

Relationships that can form between organisms that generate adaptive traits that would otherwise not exist, traits which are sometimes crucial in the context of the environmental conditions, can mean the difference between continuing forward through time and extinction. When these adaptive capabilities emerge in the context of environmental pressures, long term mutually beneficial relationships can then be conserved meaning maintained over time. This “forging of mutually beneficial relationships” that nourish or protect a local biological economy in the context of the environmental pressures is another form of what we call natural selection.

 

At one time these relationships formed by chance, and accumulated as a result of how they contributed to adaptation. Understanding how to cultivate these relationships, along with actively facilitating them where they can serve that adaptive purpose in the context of the larger body of life we live in and depend on in a constructive way is part of the technological lever we have as humans to influence our present and our future. Here is an example of this emerging application of evolution that may make a crucial difference in our continuing survival.

Sharing is the Recipe for a More Intentional Life

We humans have the advantage of knowing a greater swath of nature’s inherent proposition; that our position as a continuing entity is frail and precarious and that we must either tend to the blended duties that service our remaining coherent over time, or we cease to remain coherent.

As we push the envelope on drawing this map of understanding the relationship economy we depend on, we also unlock the corresponding opportunities that come from it. We do so by way of sharing our discoveries of the relational economy that defines our experience of life with each other. It becomes the catalyst for our ability to move more intentionally in a nourishing direction toward our full potential. Like the many droplets of rain that can ultimately collect into a massive lake, each small discovery, and the sharing of it, contributes to our strengthening potential to more effectively steer what we experience. Without this wealth, we are prone to be carried by the whims of circumstance, rather than be able to steer toward intentional places.

Among the recent discoveries we are beginning to map with more clarity – and that has shown much promise in giving us the ability to effective steer these relational waters we exist in – is the increasing awareness that individual organisms are inseparably networked to many other biological and physical entities in an interdependent relationship economy, and that nourishing or disrupting this relationship economy has a powerful defining influence on the experience of life of the participants in that biological economy. Our microbiome (the many organisms that live in and on us) is one of the the first tiers of influence in that wider biological relationship economy that we are mutually dependent on.

These microbial creatures we share the ride with in our local biological economy are a prime example of the extended interdependency that defines our experience of life. (and theirs) Our individual potential for a vibrant and dynamic life, or an impoverished one, is directly tied to how we negotiate the biological and physical economy we are baptized in. Here is an example of one of the potential ways we can now steer our experience more intentionally because of the exploration, discovery, and sharing of these finds with each other. What would have once been a situation we had to negotiate with little more than hope and complaint can now be intentionally influenced.

Precision editing of gut bacteria: Potential way to treat colitis

https://medicalxpress.com/news/2018-01-precision-gut-bacteria-potential-colitis.html

The Stories Life Depends On

Cells are sometimes called the basic unit of biological life. When working properly, they’re composed of a community of interdependent structures functioning as a coherent whole. Although the individual parts within a cell perform different tasks, they’re also interdependently connected to each other by way of a shared and unified purpose toward nourishing and or defending the whole cellular system as a coherent community.

This principle of coherent structures that involves differentiated tasks connected by way of a shared purpose for nourishment and defense in the context of a larger community does not stop at the boundary of individual cells. Organs and systems such as the immune system are also arranged as coherent entities with specialized capabilities that are connected by way of a mutually dependent unified purpose. We also see this same community principle in the shared relationships between many other biological life forms such as bacteria, plants and the environment as a whole body of life. Without this web of relationships, our biological form breaks down.

Like any social network, the cooperative bonds that form a coherent biological society rely on this story of differentiated roles bound together by mutual dependence – a story that is retold over and over on many levels. The stories involve the sacrificial heroes in that nobly put the needs of the community above their individual needs. Along with these “brave defenders” we also see inventors, and a host of other roles that might be considered more mundane, but are no less vital to the continuing coherence of the community at large.

Here is a closeup of one of these many stories; the story of a sacrificial hero, that works together with one of the more mundane players. The hero, a soldier called a neutrophil that works together sanitation engineer called a macrophage – each needing to play their vital roles in the context of the larger community to maintain the integrity of the biological system we depend on for life.

A Few Thoughts on Evolution

 

A few thoughts on evolution as a whole:

It is sometimes thought that evolution by way of natural selection happens due to happenstance mutations in genes that happen to offer some adaptive advantage, and are therefore more likely to be passed on to the next generation, thus preserving them through the generations. While this passive collection of traits is part of the evolutionary change process, natural selection is a much larger umbrella of influences, both passive and active, that have the capacity to shape the traits that contribute to an organism’s or ecosystem’s adaptive profile. The various behaviors and structures that ultimately remain coherent within an organism or ecosystem over time are those that enable the local biological field to negotiate the dynamic demands of the environment that they are continuously baptized in while also satisfying the structural hungers that must also be attended to in order to remain coherent. The relational environment contains both nourishing and antagonistic agents and is composed of both organic and inorganic influences that must be dynamically negotiated. This is no small task.

Biology is not just a relationship between organism and environment, it is also a relationship between and among organisms. It is also not solely a passive capture of traits by way of happenstance alone. Once an adaptive trait is “discovered” and embodied by various means, biology also develops various active means to pass the trait along. Biology also arguably searches out these traits and passing them along as well. Our human trait of being explorers in search of opportunity might be one of the ways this active search is facilitated. One illustration of this non genetic kind of trait is the way an animal can develop what are called “Fixed Action Patterns. A squirrel does not have to be told how to store nuts to negotiate the winter. That behavioral repertoire is embodied within the species and passed along through the generations. It was captured and stored at some level which may involve genes, but probably also entails other factors such as epigenetics as well.

Another important distinction to remember in order to see the larger landscape of biological evolution is that evolution is not a process that happens in the context of a species alone. Ecosystems also evolve as a whole body of life and there is a dynamic connection between the organisms within a species in that context. This relationship between organisms also means that organisms convey adaptive traits one to another through various means, both by way of the meaningful structured transmission of information and by way of happenstantial relational communications that confer adaptive traits. These information sources get captured at an organism or ecosystem level and actively spread the same way that the environmental trigger of a mutation in a sperm or egg that confers an advantage is more likely to get passed on.

Organisms exist in the context of many other organisms and this relational environment between organisms adds to the influential factors that shape the evolutionary process as a whole. It is this crucible that includes the deliberate transmission of traits as well as the acquisition of accidental occurrences that leads to the acquisition of adaptive traits that collectively drive the evolutionary process – this process that builds a hedge of coherency against the chaotic forces that would otherwise consume and disintegrate the body of relationships we call an organism, or ecosystem.

There are a number of ways that biological systems communicate adaptive traits one to another. This communication process that enables the passing along of adaptive traits can take the form of cooperative behaviors for instance. When we think about the wealth of adaptive capacities within our species we must consider the debt of gratitude we owe to our ability to share and cooperate. Not one of the words that are being used to communicate this idea for instance, would be understood if it were not for their structure and meaning having been shared with us at some point in time. This cooperative sharing platform has enabled humans to form our civilization.

Words are not the only way traits are transmitted between organisms. Our ability to capture and accumulate knowledge in a verbal net and transmit that knowledge one to another is synonymous with the way nature passes along of meaningful structural traits such as DNA and epigenetic information as well. Among these meaningful structural traits are sounds and behaviors such as postures or ritual sequences of behavior that convey meaning, as well as the passing of influential structures that serve as information one to another. This meaningful structural type of communication can take the form of molecules that we produce and perceive as scents, some of which, like hormones can meaningfully trigger massive behavioral shifts within and between organisms that serve various purposes like reproduction, establishment of adaptive hierarchies of social status, or the avoidance of danger etc. Still other forms of structural communication include the transmission of genetic information within and between organisms. This can happen by way of sexual reproduction, but in some cases can also occur through such methods as viruses, which can stitch genetic segments into already established DNA strands that can subsequently alter the organism in significant ways, some of which offer adaptive advantage.

Here is an article that takes a look at how viruses swap genes with a variety of cellular organisms and become part of that dynamic relational community that produced the fruit of adaptation in some cases.. In other words, viruses are also “agents of [adaptive] diversity” in certain cases:

https://dailyaccord.com/viruses-share-genes-organisms-across-tree-life/

A Life Well Lived

The measure of a life well lived is arguably one that was at least aimed at rendering something constructive in the wake of the numerous sacrifices that the larger community of life has had to make for us to have lived at all. This delivery of something more than what is taken from the community that we collectively depend on to nourish us is the very essence of “bearing fruit”. This lesson is well crafted and clearly communicated through the structure of nature in so many ways – that we can count the seeds in an apple, but not the apples in a seed, as long as those seeds are cultivated in a nourishing environment to their mature potential. Fruit, in many forms, including social, can pay endless dividends that are greater than the sacrificial investment that must be made to bring them to fruition. Recognizing, and tending to these opportunities is the essence of life.

Some few of us humans get recognized as monuments of constructive contribution (whether deserved or not). Still others of us are also well known, but for another reason; because we have left a notorious wave of destruction in our wake. The overwhelming majority of us also get to express significance, either fruitful or notorious, in another way – not as individuals, but by way of participating in something greater than ourselves – by being part of some collective effort that either strengthens our chances to remain coherent and to thrive as a community going forward, or that threatens that hedge against chaos we must maintain so that we do not get swallowed by the antagonists that would destroy the ordered economy of relationships that renders integrity that we all depend on.

The significance of what we do in these larger bodies of influence, and the fruit they bear upon maturity, is not necessarily understood by those of us that participate in them as individuals. We may be completely oblivious to the significance and power of our contributions, constructive or destructive, yet we still play our roles. We can be an example of one of these collective efforts that has the capacity to pay constructive dividends, if we passionately search out and cultivate that opportunity over time. We can also be thankful for thousands and millions who have played roles in making our potential future little more fruitful by way of discovering and cultivating these opportunities.

Our preparedness, and in some cases, our willingness to bravely face and adapt to the challenges the environment places upon us as a species will determine whether or not it will endure, or sink beneath the threshold required by nature to maintain our integrity over time. Part of nature’s inherent demand is that we we find and cultivate the routines that produce the fruit that nourishes us. Part of facing this challenge is a willingness to face the unknown – to be explorers, and make this effort part of what drives our flexibility to turn the formerly unknown to an advantage, rather than continue to fear and avoid it until it devours us in our ignorance. It is this blend of flexibility and rigidity that we are best prepared to endure the waves of chaos that would otherwise erode our integrity.

We owe a committed debt of gratitude to those of us who make the sacrificial effort to illuminate the darkness and make it part of where we can dwell – those willing to search for and cultivate these undiscovered fruits. This ode to the many unsung heroes among us that are the lifeblood of our strength and vitality may not be praised in song often enough, but they nonetheless deserving of our thanks. Thank you to all you who are out there doing things to give back to this community we share and depend on for life.

The Extended Body of Life We Depend on for Life

Although we tend to categorize biology in neat little abstract capsules like the names we might give a species, individual organisms, species and so on, do not respect these word based boundaries we give them. When we consider the community of relationships on which any part of a given biological system depends, we see the relationship membrane that defines what an organism needs to remain coherent over time extends beyond any local protein, organelle, or organ with a given species. Indeed the dependency extends beyond the membrane of any single organism or DNA profile to exist in the context of a larger body of life.

This larger body echoes the same relational dependencies that exist between cells and organs in a local biological economy such as a species, where mutual nourishment and protection of the coherency of the system is tended to by various means. In other words, a local biological economy depends on an extended family of relationships in order to continue over time, and this extended relational boundary, which operates by this same community principle, is a more accurate means of defining the membrane of a body of life than is any singular species within a local biological economy.

Like the roots of a tree extending inward to the soil, the networked lines of relational dependency a given organism requires to remain coherent over time extend both inward to include the mutually nourishing structures within the local membrane or skin of an individual organism, and outward to include a dependency on the larger economy of relationships that exists beyond the skin. Like an individual cell or organ, etc. the relationships that define an extended biological body also support the unified purpose of nourishing and protecting the continuation of the dynamic adaptive system as a whole. While there is some flexibility and redundancy, especially in larger systems, there is also a maximum threshold that, if exceeded, will result in the collapse of the system.

The same way the individual cells and organs in our body depend on each other for their mutual survival, this same community principle extends beyond singular organisms and stretches it roots of dependency into the larger body of life. There is no more pronounced, nor vital an illustration of this community principle that that which we see in bees, which depend on flowers, just as flowers depend on them, but this community principle also extends to the organisms that support the continuation of bees in less obvious ways. For instance, as illustrated in this article, certain fungi which operate as a vital organ in the larger body of life on which bees depend.

This message of mutual dependency, spoken through the biological economy of which bees and we are dependent, would be a valuable one for us to recognize and apply. It is yet one of the many valuable messages nature speaks through the structure of life.

In bee decline, fungicides emerge as improbable villain

https://phys.org/news/2017-11-bee-decline-fungicides-emerge-improbable.html

How to Control Traffic on Cellular Highways

glutamate-transportation-neurosciencenewsInside cells, protein “motors” act like trucks on tiny cellular highways to deliver life-sustaining cargoes.

Now a team led by Rutgers University-New Brunswick researchers has discovered how cells deploy enzymes to place traffic control and “roadway under construction” signs along cellular highways.

“To stay alive and function, every cell in our body needs to transport cargoes to the place they’re needed inside the cell, in the right amount and at the right time,” said Robert O’Hagan, lead author of a new study and assistant research professor in the Human Genetics Institute of New Jersey and the Department of Genetics at Rutgers University-New Brunswick. “So there has to be a lot of organization in how transport inside the cell is regulated, and now we know a lot more about how that happens.”

via How to Control Traffic on Cellular Highways – Neuroscience News

The Nature of Biological Systems

The basic nature expressed through biological systems all the way from the atoms and molecules that flit about in our cellular cytoplasm, through the organelles that serve as the institutional expressions of stability, producing and installing the various proteins we need, through the organs which have different capabilities that are dovetailed with each other, to the way we fit as species in the context of an ecosystem which we are part of and depend on for life must operate by the principle of nourishing and defending the continuing coherency of that entire system in order to remain coherent over time.

Whenever we focus at any level in a coherent biological system, we see the principle of the nourishment and the defense of coherency in the context of an environment with both nourishing and antagonistic agents at work. The coherent community of relationships of which we are composed dynamically differentiates friend from foe, and uses that perception to either call to service that which nourishes or defends itself against antagonists to remain coherent as a system over time.

Out of this fantastically complex blend of relationships, biology brings order to relative chaos. As biological creatures we are destined to engage in this process of nourishing and defending the coherency we depend on to continue. In this relational community we see the emergence of an implied purpose etched into all biological systems, whether or not these systems are at odds with each other. We call this global purpose expressed through biology by many names like survival instinct, nature, and so on, but the overarching unified purpose is that of nourishing and maintaining coherency over time. As byproducts of this theme we see acts of kindness, fruitful relationships as well as sacrifice in the mix. These various characters are the agents of balance and growth we depend on to realize our potential.

One of the prime necessary defenders in a local biological system like our own are the immune cells called “killer cells”. These cells target bacteria that are perceived as a threat and eradicate them so that they do not destroy the cooperative nourishing bonds that we depend on to remain coherent as a biological entity. Here is a closer look at how these soldiers of coherency that work and sacrifice on our behalf do their part in the tapestry of characters in this biological community that works to nourish and defend itself over time.

Microbial murder mystery solved

From the article: “…for the first time, researchers have caught killer cells red-handed in the act of microbial murder, observing them as they systematically killed three strains of microbes: E. coli and the bacteria responsible for causing Listeria infection and tuberculosis. The process inflicts bacterial cell death regardless of whether the environment contains oxygen or not… [The] findings… reveal that killer cells act methodically, shooting deadly enzymes into bacteria to “program” a complete internal breakdown and cell death.”

https://phys.org/news/2017-11-microbial-mystery.html